

PEP-484 and PEP-526 Gradual
Typing

Or how to make your Python project more
sturdy

...and sometimes faster.

About typing

● Big Topic
● Frequently about:

– Static vs Dynamic (or "Duck Typed")
– ..and Implicit vs. Explicit (or "Manifest")

Static and Dynamic Typing

● Static Typing: Types are assigned before
program execution

● Dynamic Typing: Types are assigned during
program execution

● There are degrees of this, EG:
– Java's "Downcasting"
– Python's Gradual typing

Explicit vs. Implicit Typing

● Explicit typing is like Java
– ...where you declare all your types
– ...except lambdas?

● Implicit typing is like Haskell
– ...where nearly all your variable types are undeclared and types are inferred from context
– Despite this, Haskell is statically typed.
– It's also hard to work with.

● There are degrees of this too. EG:
– Go
– Rust
– PEP-484 / PEP-526
– Cython
– MypyC

About Gradual Typing – What is it?

● Allows the developer to manifestly declare
some variables and not others

● Variables without explicit types have their types
inferred

● Can effectively be used just for function
signatures and perhaps some collection types

● ...or more
● ...if you feel like it

What is Python Gradual Typing
good for?

● It's mostly about making programs more reliable, by
checking that callables' inputs and outputs have
compatible types.

● It is more appropriate for large projects than for small
projects

● It is usually not about making things run faster;
CPython, Pypy, Micropython and Tauthon ignore the
annotations, treating them as documentation.
– Cython and mypyc are exceptions – they can use types for

speeding things up. More later.

If Python ignores them...

● ...how is reliability improved?
● A static analyzer pass like mypy is run on the

code to check the types, before the interpreter
runs the code.

● This typically becomes part of "the build
process."

Motivation: A Quick Example

def get_mtime(filename: str) -> float:

 """Return the modification time of filename."""

 stat_buf = os.stat(filename)

 return stat_buf.st_mtime

Note that we've declared filename

...and the return type

...but not stat_buf.

This works fine.

What Uses Type Annotations

● The CPython interpreter itself treats type annotations as mere documentation;
they have no other meaning to Python

● CPython needs an external tool like mypy or pytype to do gradual type checking
● Cython has true type declarations

– but for now they are on a cdef or cpdef, and use a different syntax
– Cython is working on PEP-484 and PEP-526 types
– Pretty mature project

● MypyC:
– compiles PEP-484 and PEP-526 typed python to C extensions
– is too young for production use yet.

● IDE's
● Jedi

Implementations

Implementation Name Origin Notes

mypy Dropbox The original, most common,
the one we mostly cover
here

pytype Google Purportedly fast

pyre-check Facebook

pyright Microsoft

hug A REST API framework, not
compatible with mypy

Mypy and Python Version

● Type annotations available in Python 3.0 and up (Tauthon
2.8 too)

● The types you declare things with in part come from the
typing module
– typing module comes with Python 3.[56789]
– typing module available as a backport for 2.7 and 3.[234]

● Can be made to work with Python 2.x, but it requires type
comments and/or separate .pyi files for type declarations

● Mypy is under a Google OpenSource copyright

Mypy Sample Invocation

python3 \
-m mypy \

--disallow-untyped-calls \

--ignore-missing-imports \

file1.py file2.py

Declaring the Type of a Variable:
Python 3.5

● from typing import List, Dict
● size_dict = {} # type: Dict[int, List[str]]
● The comment does it
● Sometimes helps mypy
● Also works on Python 3.6

Declaring the Type of a Variable:
Python 3.6 and up

● from typing import List, Dict
● size_dict: Dict[int, List[str]] = {}
● Sometimes helps mypy
● No weird comment involved

A Method with Declared Types in
Python 2.7

class Example:

 def method(self, lst, opt=0, *args, **kwargs):

 # type: (List[str], int, *str, **bool) -> int

 """Docstring comes after type comment."""

 A Union Type

from typing import Union

def fn(x: Union[int, str]) -> None:
"""x is an int or a string."""

if instance(x, int):
print(x + 1)

else:
print(x + 'a')

An "Optional" type

from typing import Optional

def concat(x: Optional[str], y: Optional[str]) -> Optional[str]:

"""

x and y are None or string.

This is a common special case of Union types, so it gets its own name.

"""

if x is not None and y is not None:

return x + y

return None

A Type Alias

Types can get long!

AliasType = Union[List[Dict[Tuple[int, str], Set[int]]], Tuple[str, List[str]]]

Now we can use AliasType in place of the full name:

def f() -> AliasType:

 ...

An Iterator

from typing import Iterator

def squares_forever() -> Iterator[int]:
value = 1

odd_number = 3

while True:
yield value

value += odd_number

odd_number += 2

A Variable that can Refer to
Anything

from typing import Any

a: Any = 5

a = 'spam'

Nice for some heterogeneous collection types

Notice that we declared it once and used it twice

Declaring Types Used Before They
Have Been (Fully) Defined

class Fraction:
def __init__(self):

self.numerator = 0

self.denominator = 1

def __lt__(self, other: ‘Fraction’) -> bool:
...

Higher Order Functions

from typing import Callable

def callback(x: int):

 print(f'In callable, got x: {x}')

def function(fn: Callable[[int], int], value: int):

 fn(value)

function(callback, 2)

Overriding mypy type checking

● To turn off mypy checking for just one line, add
this to the end of that line:

type: ignore

What can Generate Type
Annotations for You?

● Adding type annotations to existing code is hard, but that's why
they're valuable – because otherwise when modifying that code
you'd do almost the same thing.

● These can automatically generate them for existing code:
– MonkeyType
– Jedi's pep484transform.py
– PyAnnotate: Guido Van Rossum contributed to this one

● We focus on MonkeyType here, as it's more popular in Google
Search.

MonkeyType

● From their github page:
MonkeyType collects runtime types of function arguments
and return values, and can automatically generate stub files
or even add draft type annotations directly to your Python
code based on the types collected at runtime.

● Requires Python 3.6 and up to collect the data
● Can output stubs for 2.7
● BSD licensed with a Facebook copyright
● Is by people at Instagram, which is owned by Facebook

Collecting Runtime Types with
MonkeyType

● monkeytype run myscript.py
● This collects types used in myscript.py and its

dependencies via the sys.setprofile hook (like
coverage.py)

● The results are stashed in an SQLite database
in the CWD

Applying the Results

● Running "monkeytype stub some.module" will output a stub:

def add(a: int, b: int) -> int: ...
● Running "monkeytype apply some.module" will modify

some/module.py to:

def add(a: int, b: int) -> int:

 return a + b
● stub and apply appear to only work on imported python modules, not

shell-callables.
● Furthermore, they appear to import modules as they add type

annotations, so if __name__ == '__main__': appears to be required
for some modules

How Robust is MonkeyType?

● At last report, Instagram had applied it to about
a third of their codebase

● Their codebase is well over one million lines of
Python 3.x

IDE's and editors

● PyCharm
● VSCode
● Vim
● Emacs

PyCharm

● Uses intention actions

● https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html

● Sounds pretty complete?

● To install, inside PyCharm:

– Ctrl-Alt-S > Plugins > search "mypy" > Install

– There are two mypy plugin options:
● "Mypy"

– I had problems with this one, so I tried the other
● "Mypy (Official)"

– This one seems to mostly work

– If you need mypy installed, PyCharm might prompt you to install it. The first plugin
option above prompted me at least. You could also python3 -m pip install mypy

https://www.jetbrains.com/help/pycharm/type-hinting-in-product.html

PyCharm continued
● Using "Mypy (Official)":

– It gives a "Mypy Console" at the bottom

– Clicking "Run" in the lower right invokes the type checker

– It doesn't seem to do much until you have a critical mass of types declared

– In fact, in a little test program, it ignored a serious error until I added types for everything in the script
– But you can set up stricter checking:

● In the GUI
– Right click in the Mypy Terminal subwindow and select "Configure Plugin"
– Add --disallow-untyped-calls --ignore-missing-imports
– ...to the dmypy invocation

● Or in the filesystem (mypy.ini at the root of your project) – this example ignores most errors

[mypy]
ignore_missing_imports = True

ignore_errors = True

[mypy-blog.admin.*]

ignore_errors = False

Yet more PyCharm

● PyCharm can annotate types for you, though it might be a click-heavy
process.

● To enable it:
– Go to Settings -> Build, Execution, Deployment -> Python Debugger page.
– There, turn on the option labeled as Collect run-time types information for code

insight.
– Run your code under the debugger, in production and/or with your test suite.
– Go back to your code, select a def of a function or method with the left mouse

button, and hit Alt + Enter (in PyCharm on Linux).
– Select "Add type hints for…" in the resulting menu.
– Your single def fn should now have type annotations.
– If everything comes up 'object', you probably haven't enabled 'Collect run-time

types'

VSCode
● Sounds like just another Linter for VSCode

● https://code.visualstudio.com/docs/python/linting

https://code.visualstudio.com/docs/python/linting

Vim

● I prefer to shell out to `make` for now, and have
my Makefile's default rule run mypy, among
other things.

● EG this sets up *ma to save the current buffer
and invoke make (or setup.py):
– map *ma :w!^M:!clear; if [-f Makefile]; then make;

else python3 setup.py build; fi^M

● Apparently mypy works with Syntastic though.

Emacs

● Sounds like it works with Flycheck

References

● https://breadcrumbscollector.tech/mypy-how-to-
use-it-in-my-project/

● https://breadcrumbscollector.tech/mypy-how-to-
use-it-in-my-project-part-2-automatically-annota
te-code/

● https://breadcrumbscollector.tech/mypy-how-to-
use-it-in-my-project-part-3-kick-ass-tools-that-le
verage-type-annotations/

● https://github.com/typeddjango/awesome-pytho
n-typing

https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-2-automatically-annotate-code/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-2-automatically-annotate-code/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-2-automatically-annotate-code/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-3-kick-ass-tools-that-leverage-type-annotations/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-3-kick-ass-tools-that-leverage-type-annotations/
https://breadcrumbscollector.tech/mypy-how-to-use-it-in-my-project-part-3-kick-ass-tools-that-leverage-type-annotations/
https://github.com/typeddjango/awesome-python-typing
https://github.com/typeddjango/awesome-python-typing

The End

● Questions?
● Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

